
Why the Code Solves the PDE

A Demonstration of Discretising Laplace's Equation

Paul Slavin

The University of Manchester

slavinp@cs.man.ac.uk

Overview

This document gives an informal explanation of why a computer implemen-
tation of a simple numerical discretisation `solves' a particular pde. It aims
to familiarise students with the concepts of the Finite-Di�erence approach to
numerical modeling and, by exploring the discretisation of a simple equation,
to build intuition which may then be applied to more complex scenarios.

Introduction

Consider a hypothetical code1 which implements a Finite-Di�erence solution
of a two-dimensional Laplace's equation.

∂2u

∂x2
+

∂2u

∂y2
= 0

Several things will immediately be apparent about this code:

• No part of the code corresponds to the derivative operator, let alone
the second partial.

• There is no global expression for the solution. Instead, the value at
each point is related to that of the neighbouring values.

• The equation and its analytic solution are continuous in both space
and time, yet the code necessarily uses discrete values for both.

Why then should this code be considered a valid representation of the original
pde? In what sense is the `solution' that it calculates an accurate represen-
tation of the analytic solution?

1This document was originally prepared for students of the COMP6032 �High Perfor-

mance Computing in Science and Engineering� course at the University of Manchester.

A code equivalent to the `hypothetical' code described herein is used as one of the lab

exercises.

1



Discretisation

To answer these questions, we will consider a simpli�ed version of the prob-
lem, illustrated in (1), which describes 1D linear advection. We will follow a
sequence of steps which leads directly from this equation to the code which
implements a �nite-di�erence solution of it.

∂u

∂t
+ c

∂u

∂x
= 0 (1)

We begin by considering the de�nition of the derivative.

df

dx
= lim

h→0

f(x + h)− f(x)

h

This expresses the derivative of a function with respect to one of its variables
as the instantaneous di�erence in its value induced by an in�nitesimal change
in the value of the variable in question. To consider how this statement may
be translated into terms which can be represented in a computer, we discretise
the equation (1) with respect to each of its variables. The function u in (1)
is a function of both x, a single spatial dimension, and t representing time.
As such, we introduce a coordinate system in which the possible values of x
and t are represented by the indices i and n respectively, just as the possible
values in a Cartesian coordinate system are represented by the indices x and
y.
We wish to represent the continuous values of x and t in this coordinate
system in a discrete form, so we de�ne the concept of the `smallest possible
increment' ∆ for each of these values. In spatial terms, the two values of
x which can be considered to be adjacent are separated by one unit of ∆x.
Using our index notation, this is written as i+∆x, or equivalently i+1, and the
change in the value of u induced by this change is expressed as ui+1 − ui.
Similarly we can denote values of t which are immediately `adjacent' using
the indices n and n+1, so that the value of u for a particular x and t is denoted
by un

i .
Using the de�nition of the derivative and applying our discrete notation to
equation (1) gives...

un+1
i − un

i

∆t
+ c

un
i − un

i−1

∆x
= 0

...which we can rearrange as...

un+1
i = un

i − c
∆t

∆x
(un

i − un
i−1)

2



This provides an explicit expression for un+1
i in terms of values from the

previous timestep. That is, by knowing the state of the system at time n we
are able to calculate the state at n+1, and so on.
This insight constitutes the essential technique of the �nite-di�erence method:
by expressing a pde in a discretised form, we are able to calculate a solution
by proceeding iteratively from a speci�ed initial state.

Laplace's Equation

We now return to the example of Laplace's equation. In contrast to our sim-
ple advection example, Laplace's Equation involves second order derivatives,
and we must therefore express these in a discretised form.
We use the symmetric form of the second derivative.

d2f

dx2
= lim

h→0

f(x + h)− 2f(x) + f(x− h)

h2

By applying our discretisation procedure to this and substituting the cor-
responding expressions into Laplace's equation, we arrive at a discretised
representation of Laplace's equation.

un
i+1,j − 2un

i,j + un
i−1,j

∆x2
+

un
i,j+1 − 2un

i,j + un
i,j−1

∆y2
= 0 (2)

Whereas the advection equation we considered above contains a rate of
change with respect to time, Laplace's equation represents a steady state.
As such, the value of n in our discretisation can be considered to be a con-
stant. While n may therefore be omitted entirely, we will see later that its
inclusion gives us an insight into the manner of implementing an iterative
solution.
We may then solve this discretised form for un

i,j.

2un
i,j

∆x2
+

2un
i,j

∆y2
=

un
i+1,j + un

i−1,j

∆x2
+

un
i,j+1 + un

i,j−1

∆y2
(3a)

2un
i,j(∆x2 + ∆y2)

∆x2∆y2
=

(un
i+1,j + un

i−1,j)∆y2 + (un
i,j+1 + un

i,j−1)∆x2

∆x2∆y2
(3b)

un
i,j =

(un
i+1,j + un

i−1,j)∆y2 + (un
i,j+1 + un

i,j−1)∆x2

2(∆x2 + ∆y2)
(3c)

Equation (3c) gives an explicit form for un
i,j in terms of its neighbouring

values.
Where ∆x = ∆y the discretised Laplace equation in (2) reduces to

3



un
i+1,j − 2un

i,j + un
i−1,j + un

i,j+1 − 2un
i,j + un

i,j−1 = 0

Which may be solved directly for un
i,j to give

un
i,j =

(un
i−1,j + un

i+1,j + un
i,j−1 + un

i,j+1)

4

It will be observed that this explicit discretised equation corresponds exactly
to an implementation in code of the �nite-di�erence method for Laplace's
equation.

Addendum: Further Investigation

This section introduces some additional concepts and vocabulary which may
be investigated further to develop a deeper understanding of the material
presented above.

Convergence and Stability

We have provided a plausible rationale for accepting that a discretised Finite-
Di�erence scheme does indeed solve the pde that it represents. But *must*
such a technique always give the correct answer? The answer to this is
the negative. Not only may a Finite-Di�erence scheme give an answer so
inaccurate as to be useless, but it is not guaranteed to give any answer at
all.
The conditions that must be satis�ed for a scheme to converge upon an
answer are described by the Courant-Friedrichs-Lewy (CFL) condition. This
relates the size of an increment in the discretisation's spatial dimensions to
the size of an increment in its timestep and to the speed of movement that
takes place within a model. The cfl condition must be satis�ed in order for
a model to converge, but it should be noted that meeting the cfl condition
is not su�cient to guarantee convergence for all models.
The accuracy of a Finite-Di�erence scheme may be measured by the tech-
niques of Von Neumann stability analysis. The numerical stability of a
scheme relates to the tendency of its error, de�ned as the di�erences be-
tween the computed solution and the analytical solution, to remain bounded
as its timesteps advance. Von Neumann stability analysis decomposes this
error into Fourier series, the relation between which provides a necessary and
su�cient condition for a model's error to remain bounded.

4



Scheme Naming-conventions

The Finite-Di�erence scheme developed in this document is described as an
explicit scheme as it provides an explicit formula for un

i,j in terms of other
values. An implicit scheme arrives at the desired value by establishing an
equation which incorporates this value as a solution. By taking the average
of both and explicit and implicit scheme, a semi-implicit or Crank-Nicholson
scheme is produced.
Schemes may also be categorised as Forward, Backwards, or Central di�er-
ence schemes. This simply relates to the form of the di�erential that is being
represented by the discretisation; that is a right, left, or symmetric di�eren-
tial. Similarly, the terms Upwind and Downwind describe the direction in
which amplitudes propagate in a scheme.


